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ESPAM1.1 Curtailment Scenario 

• Contor, et al. (2006) available at 
http://www.if.uidaho.edu/~johns
on/ifiwrri/projects.html#prj rpt 

 

• Modeled curtailment of 
groundwater irrigation within 
model boundary junior to five 
selected priority dates 

 

• No administrative boundaries 
were applied (no trim line, no 
area of common groundwater) 

 



ESPAM1.1 Curtailment Scenario 

• Numerical superposition version of EPSAM1.1 

• Average precipitation from 1961-1990 

• Average ET from 1980-2001 

 

• Predictions 
– Steady state response to continuous curtailment 

– Transient response to continuous curtailment for 
150 years 

– Transient response to a one-year curtailment 



ESPAM2.0 Curtailment Scenario 

• Draft report available for ESHMC 
review and comment at 
http://www.idwr.idaho.gov/Brow
se/WaterInfo/ESPAM/model_files
/Version_2.0_Development/Curre
nt_Documentation/ESPAM2_curt
ailment_scenario/ 

 

• Modeled same scenarios as 
Contor et al. (2006) 

 

 

http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/model_files/Version_2.0_Development/Current_Documentation/ESPAM2_curtailment_scenario/
http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/model_files/Version_2.0_Development/Current_Documentation/ESPAM2_curtailment_scenario/
http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/model_files/Version_2.0_Development/Current_Documentation/ESPAM2_curtailment_scenario/
http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/model_files/Version_2.0_Development/Current_Documentation/ESPAM2_curtailment_scenario/
http://www.idwr.idaho.gov/Browse/WaterInfo/ESPAM/model_files/Version_2.0_Development/Current_Documentation/ESPAM2_curtailment_scenario/


ESPAM2.0 Curtailment Scenario 

• Numerical superposition version of EPSAM2.0 

• Run with well files from ESPAM1.1 scenarios 

• Run again with well files created using 
ESPAM2.0 input data 
– 2012 POD file 

– 2008 irrigated lands 

– Average groundwater fraction raster 

– Average precipitation from Nov 1998 – Oct 2008 

– Average ET from Nov 1998 – Oct 2008 

 

 



Comparison of Steady State Results 

• Compare ESPAM2.0 prediction (with ESPAM2.0 input 
data) to ESPAM1.1 prediction for net difference 

 

• Comparison of ESPAM2.0 predicted response to 
ESPAM1.1 well file with ESPAM1.1 prediction illustrates 
differences in model structure and model parameters 

 

• Comparison of EPSAM2.0 prediction with ESPAM2.0 
predicted response to ESPAM1.1 well file illustrates 
differences in input data 

 

 



SIMULATED CURTAILMENT, 1/1/1870 
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SIMULATED CURTAILMENT, 1/1/1949 
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Predicted response to curtailment of groundwater rights junior to 1/1/1949 
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SIMULATED CURTAILMENT, 1/1/1961 
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SIMULATED CURTAILMENT, 1/1/1973 
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Predicted response to curtailment of groundwater rights junior to 1/1/1973 
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SIMULATED CURTAILMENT, 1/1/1985 
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Comparison of Steady State Results 

• Volume of curtailed consumptive use for a given priority date 
is 17% to 21% higher using ESPAM2.0 input data 
– Improved representation of irrigated lands 

– Updated ET data 

– Improved representation of ET adjustment factors 

– Updated precipitation data 

– Updated water rights data 

• Changes in relative responses of some spring and river 
reaches 
– Improved and updated calibration targets 

– Improved and updated water budget input data 

– Addition of general head boundaries 

 

 



Comparison of Long Term Transient Results 

• Long term transient simulation of 150 years of continuous 
curtailment modeled using average annual rate 

 

• Compare ESPAM2.0 prediction (with ESPAM2.0 input data) to 
ESPAM1.1 prediction for net difference 

 

• Comparison of ESPAM2.0 predicted response to ESPAM1.1 
well file with ESPAM1.1 prediction illustrates differences in 
model structure and model parameters 
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Years of continuous curtailment 
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Years of continuous curtailment 
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Years of continuous curtailment 

Predicted response to curtailment, Buhl to Lower Salmon Falls springs 
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Years of continuous curtailment 

Predicted response to curtailment, LSF to King Hill springs 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, Ashton to Rexburg reach 

Steady state (ESPAM2.0) 90% of steady state (ESPAM2.0) ESPAM2.0 (1870) 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, Heise to Shelley reach 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, Shelley to near Blackfoot reach 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, nr Blackfoot to Minidoka reach 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, Kimberly to Buhl springs 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, Buhl to Lower Salmon Falls springs 

Steady state (ESPAM2.0) 90% of steady state (ESPAM2.0) ESPAM2.0 (1870) 
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Years of continuous curtailment 

Predicted response to ESPAM1.1 stress file, LSF to King Hill springs 

Steady state 90% of steady state 1/1/1870 
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Head response at selected locations 
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ESPAM2.0 Response to ESPAM1.1 stress file ESPAM1.1 
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1/1/1870 Response to ESPAM1.1 stress file ESPAM1.1 
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1/1/1870 Response to ESPAM1.1 stress file ESPAM1.1 
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Head response to curtailment junior to 1/1/1870 in Thousand Springs area 

ESPAM2.0 Response to ESPAM1.1 stress file ESPAM1.1 
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ESPAM2.0 Response to ESPAM1.1 stress file ESPAM1.1 
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Comparison of Long Term Transient Results 

• Response at nr Blackfoot to Minidoka reach and at springs 
downstream of Milner reaches 90% of steady state more 
quickly than in ESPAM1.1 

 

• Head response at selected locations near American Falls, in 
A&B Irrigation District, near Craters of the Moon, and in 
Thousand Springs area also approach steady state more 
quickly than in ESPAM1.1  

 

• Reflects changes in calibration of aquifer transmissivity and 
storativity 

 

 

 



Short Term Transient Results 

• Illustrate seasonal response patterns resulting from change in 
discretization of model stress periods 

 

• ESPAM1.1 applied consumptive use from groundwater 
irrigation as a constant stress at an average seasonal rate from 
May 1 to October 31 

 

• ESPAM2.0 applies consumptive use from groundwater 
irrigation at average monthly rate  
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Predicted seasonal response to curtailment, Heise to Shelley reach 
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Summary 

• ESPAM2.0 data indicate groundwater irrigated acreage 
and consumptive use are higher than calculated with 
ESPAM1.1 data 

• Changes in calibrated model parameters result in 
changes in the relative responses of some spring and 
river reaches 

• Changes in calibrated model parameters generally result 
in quicker transient responses in the western portion of 
the model 

• Seasonal response pattern reflects change to monthly 
stress periods 



Questions? 



Surface Water Irrigated Lands Groundwater Irrigated Lands 


